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We propose to combine the nonlinear scaling fields associated with the high-
temperature (HT) fixed point, with those associated with the unstable fixed
point, in order to calculate the susceptibility and other thermodynamic quanti-
ties. The general strategy relies on simple linear relations between the HT
scaling fields and the thermodynamic quantities, and the estimation of RG
invariants formed out of the two sets of scaling fields. This estimation requires
convergent expansions in overlapping domains. If, in addition, the initial values
of the scaling fields associated with the unstable fixed point can be calculated
from the temperature and the parameters appearing in the microscopic Hamil-
tonian, one can estimate the critical amplitudes. This strategy has been devel-
oped using Dyson’s hierarchical model where all the steps can be approximately
implemented with good accuracy. We show numerically that for this model (and
a simplified version of it), the required overlap apparently occurs, allowing an
accurate determination of the critical amplitudes.

KEY WORDS: Renormalization group; scaling fields; high-temperature expan-
sion; hierarchical model; normal forms; critical amplitudes; crossover.

1. INTRODUCTION, MOTIVATIONS, AND MAIN RESULTS

It is well-known that the magnetic susceptibility of a spin model near its
critical temperature can be parametrized as

q=(bc−b)−c (A0+A1(bc−b)D+·· · ) (1.1)

In this expression, the exponents c and D are universal and can be obtained
from the calculation of the eigenvalues of the linearized renormalization
group (RG) transformation. On the other hand, the critical amplitudes
A0, A1,... are functions of the microscopic details of the theory. One can
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find universal relations (1) among these amplitudes and the ones associated
with other thermodynamic quantities, however these relations do not fix
completely the amplitudes. In the end, if we want a quantitative estimate of
a particular amplitude, we need to perform a calculation which requires a
knowledge of many details of the RG flows. Such a calculation is in general
a difficult, nonlinear, multivariable problem. In this article we propose a
general strategy based on the construction of nonlinear scaling fields asso-
ciated with several fixed points, to calculate the critical amplitudes, and we
demonstrate its feasibility in the case of Dyson’s hierarchical model.

A common strategy in problems involving nonlinear flows near a sin-
gular point, is to construct a new system of coordinates for which the
governing equations become linear. It seems intuitively clear that if the
original problem is sufficiently nontrivial, normal form methods can only
work in some limited way, locally, because the flows of the nonlinear
problem have global properties which do not match those of the linear
flows. A well-known argument for the inadequacy of such procedure
(which extends beyond the special case of an expansion near a singular
point) was provided by Poincaré (2) in the context of perturbed integrable
Hamiltonians. He discovered that even though it is possible to write a
formal perturbative series for the action-angle variables, some coefficients
have ‘‘small denominators,’’ and generically, the series are ill-defined.
However, under some restrictions (formulated according to some appro-
priate version of the K.A.M. theorem (3)), perturbation theory can still
provide interesting information.

Almost thirty years ago, Wegner, (4) introduced quantities that trans-
formed multiplicatively under a RG transformation. He called them ‘‘scal-
ing fields’’ and we will use his terminology in the following. Sometimes, one
also uses the terminology ‘‘nonlinear scaling field’’ to distinguish them
from the linear ones (see Section 2 for details). In the following, ‘‘scaling
fields’’ mean the nonlinear ones and we will use the terminology ‘‘linear
scaling fields’’ when necessary. These fields play a central role in the pre-
sentation of the basic ideas of the RG. They appear in almost any review
on the subject (see for instance ref. 5). As in the case of Hamiltonian
dynamics, there exists a formal series expansion for the scaling variables
[see Eq. (4.9) in ref. 4]. It is commonly assumed that the functions defined
with this procedure are analytic, at least within a certain neighborhood of
the fixed point. However, for most non-trivial models, it is very difficult to
prove this assumption. In particular, it is difficult to address the question
of small denominators because it requires an accurate calculation of the
eigenvalues of the linearized RG transformation.

If the small denominator problem can be controlled and if some local
expansion is well-defined, there remain several important global issues.
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What is the domain of convergence of this expansion? How does the
accuracy of an expansion with a finite number of terms evolve when we
move away from the fixed point? Can different expansions have overlap-
ping domain of convergence? These important global issues are rarely dis-
cussed because of practical limitations: in crossover regions, we need large
order expansions in many variables. Unfortunately, this problem has to be
faced if we want to calculate all the critical amplitudes. In this article, we
propose a general strategy to calculate directly the critical amplitudes. This
strategy has been developed using Dyson’s hierarchical model, where large
order expansions in many variables are practically feasible. All the numer-
ical calculations presented hereafter were done with this model (or a
simplified version of it).

The general point of view that we want to advocate here is that one
should combine different sets of scaling fields. Even though the scaling
fields are almost always constructed in the vicinity of Wilson’s fixed point,
they can in principle be constructed near any other fixed point. If one can
find some overlap among the domains of convergence of these expansions
it is possible to reconstruct the flows, given their initial values. In other
words, we would like to develop a new analytical approach to complement
the existing methods used to deal with the crossover between fixed points,
namely, the Monte Carlo method, (6–8) a combination of field-theoretical
methods and mean field calculations (9, 10) or the study of the entropy asso-
ciated with the RG flows. (11)

In the following, we concentrate on the study of the RG flows in the
symmetric phase of spin models having a nontrivial unstable fixed point.
Our goal is to calculate the critical amplitudes by constructing the scaling
fields near the three relevant fixed points: the Gaussian fixed point (if
relevant), the unstable fixed point (sometimes called the IR fixed point or
Wilson’s fixed point), and the high-temperature (HT) fixed point. The
idea is represented schematically in Fig. 1.

We propose to follow three specific steps to achieve this goal. These
steps correspond to a construction in backward order, starting with the
flows near the HT fixed point and ending with the initial conditions. First,
we express the thermodynamic quantities in terms of the scaling fields of
the HT fixed point. Second, we use the scaling fields of the unstable IR
fixed point, to write the thermodynamic quantities as a main singularity
times a RG invariant quantity constructed out the two scaling fields. Third,
we calculate the initial values of the scaling fields associated with the
unstable fixed point in terms of the basic parameters appearing the micro-
scopic Hamiltonian. These three steps are explained in more detail in
Section 2. This section is essential to understand the general ideas and
the notations used later. It should be noted that the first two steps are
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Fig. 1. Schematic representation of a RG flow starting near the Gaussian fixed point,
passing near Wilson’s fixed point and ending at the stable high-temperature fixed point. The
circles represent the domains of validity of expansions of the scaling fields near the three fixed
points.

independent of the initial conditions and are in some sense universal. On
the other hand, the third step provides the initial data as a function of the
basic parameters such as the temperature or the ‘‘bare parameters’’ of
Landau–Ginzburg models. Consequently, the method used to implement
the third step depends on the initial measure considered. For instance, if we
start with an initial measure near the Gaussian fixed point, perturbative
field theoretical methods (Feynman diagrams) will be used.

Each of these three steps can in principle be implemented for spin
models with nearest neighbor interactions in three dimensions, by using
available expansions to describe the flows in each region. However, in
order to discuss the behavior of the expansions in the crossover region, we
need large order expansions. Despite the existence of increasingly sophis-
ticated methods used for various expansions in nearest neighbor models
(see e.g., ref. 12), it is still a major time investment to perform these expan-
sions. In order to test the feasibility of the procedure, we have considered
approximations for which large order expansions (see e.g., refs. 13 and 14)
can be reached more easily. Namely, we have used hierarchical approxi-
mations where only the local part of the measure is renormalized under a
RG transformation. Well-known examples are the ‘‘approximate recursion
formula’’ (15) or Dyson’s hierarchical model (HM). (16, 17) Despite this approx-
imation, the nonlinear aspects of the problem are still nontrivial. To fix the
ideas, the calculations that we have performed required the determination of
several thousands of coefficients in various expansions.

The relevant facts about the HM and its RG transformation are
reviewed in Section 3. Before embarking in a multivariable calculation, we
have first considered a simplified version involving only one variable (18)
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where the small denominator problem is obviously absent. This model dis-
cussed in Section 4, is simply a quadratic map with two fixed points, one
stable and one unstable. Series expansions for the scaling fields of this
simplified model, and their inverse, can easily be constructed. Treating
these numerical series with well-known estimators, (19) we obtain radii of
convergence and exponents in very good agreement with what we can infer
by using general arguments. These numerical results will be used as refer-
ences when a similar analysis is conducted later for the HM. The most
important result of Section 4 is illustrated Fig. 5 which shows that the
expansions of the scaling fields scale accurately in overlapping regions.

The rest of the article is devoted to the HM with one spin component
per site (as in the Ising model). For this model, the existence of a non-
trivial unstable fixed point has been proven rigorously. (20, 21) Significant
results have been obtained regarding the local existence of scaling fields for
the RG map near the unstable fixed point by Collet and Eckmann (21) and
Koch and Wittwer. (22) In addition, ref. 22 contains a mathematical justifi-
cation of the polynomial approximations that we have used to perform
large order HT expansions (13, 14) or direct numerical calculations. (23, 24) In the
following, the parameter playing the role of the dimensionality (see Sec-
tion 3) will be tuned in such way that a Gaussian massless field scales
exactly as in three dimensions. In other words, we will work at an inter-
mediate value between the upper and lower critical dimensions and the
E-expansion is not obviously useful. For this particular choice of the
dimensionality parameter, the numerical value of the unstable fixed point is
known with great precision in a specific system of coordinates (25) and the
question of small denominators studied in ref. 26.

Using these results we first provide an explicit construction of the two
sets of scaling fields and show that the first two steps can be implemented.
We found simple linear relations between the derivatives of the free energy
and the HT scaling fields. The RG invariants discussed above can be cal-
culated accurately (see Fig. 14) because the scaling fields associated with
the two fixed points scale accurately in overlapping regions as shown in
Fig. 13. The third step was performed in the case of an initial Ising measure
where the temperature is the only free parameter. Putting everything
together, we can calculate the leading and subleading amplitude of the
susceptibility and have very good agreement with previous numerical cal-
culations. (24) This demonstrates the feasibility of the proposed startegy. In
the conclusions, we discuss our plans to extend this method for perturba-
tive initial conditions and for nearest neighbor models.

A few words of caution. We want to make clear that the main result
presented in this article is a calculation of the leading and subleading criti-
cal amplitudes of the magnetic susceptibility of the hierarchical model. This

From Nonlinear Scaling Fields to Critical Amplitudes 217

File: KAPP/822-joss/108_1-2 373232 - Page : 5/34 - Op: GC - Time: 13:36 - Date: 02:05:2002



calculation shows that the strategy discussed in the coming Section 2 can
be implemented successfully for this particular model. The fact that part of
the introduction and Section 2 are written for a general spin model should
not be interpreted as the statement that it is straightforward to implement
the strategy for other models than the hierarchical model. The reader
whose main interest is the hierarchical model may read Section 2 as a
general description of what is done in the rest of the paper. On the other
hand, the reader interested in using the general strategy for other models,
should be aware that we do not provide a general procedure for construct-
ing the unstable fixed point and its scaling fields. In addition, the fact that
we found overlapping domain of convergence in the particular computa-
tion presented here is an encouraging result but it does not guarantee that a
similar overlap will be found for other models.

2. THREE STEPS TOWARDS THE CALCULATION OF THE

CRITICAL AMPLITUDES

In this section, we consider a scalar model on a D-dimensional lattice
with a lattice spacing a0. We assume that b < bc and that the free energy
density f is finite in the thermodynamic limit. We discuss the estimation of
the critical amplitudes in the HT phase for q (l), the l th derivative of −f
with respect to an external magnetic field. For definiteness, we generalize
the parametrization of Eq. (1.1) to

q (l)=(bc−b)−c
(l)
(A (l)0 +A

(l)
1 (bc−b)D

(l)
+·· · ) (2.1)

We assume the existence of a discrete RG transformation R, which can be
performed in the following way. We first integrate the fields in blocks of
side ba0 while keeping the sum of the fields in the block constant. We then
rescale the sums of the fields by a factor b (−2−D+g)/2. For the HM, b=21/D

and g=0. We assume that this RG transformation has one non-trivial
unstable fixed point and an attractive HT fixed point. We first introduce
general notations for the scaling fields and then discuss the three steps.

2.1. Construction of the Scaling Fields

A preliminary requisite is the construction of the two sets of scaling
fields. We construct the scaling fields near the unstable fixed point, denoted
y(d), in terms of the coordinates d in the directions of the eigenvectors of
the linearized RG map at that fixed point. The boldface notations mean
that the quantity is a vector. In the following we will consider finite
dimensional approximations for such vectors. For small values of d, we
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have y(d) 4 d. One could call the d, the ‘‘linear scaling fields’’ or the ‘‘real
fields’’ (4) if they have a simple physical interpretation. If we denote the RG
transformation in the d coordinates as R(d), and lj as the eigenvalue in the
jth direction, we have by definition of the scaling fields

yj(R(d))=lj yj(d) (2.2)

In the following, we assume that the spectrum is real, positive, non-degen-
erate and that only l1 > 1.

Similarly, the HT scaling fields denoted ỹ(h), can be constructed as
expansions in the coordinates h in the directions of the eigenvectors of the
linearized RG map at the HT fixed point. With notation analog to Eq. (2.2),
we have

ỹj(R(h))=l̃jỹj(h) (2.3)

The d’s can be expressed in terms of the h’s by a shift followed by a linear
transformation. In the following yn, l or yl(dn) will denote the value of the
lth scaling field after n iterations, and similar notations will be used for the
HT variables.

2.2. Step 1

The first step consists in expressing the q (l) in terms of the scaling
fields of the HT fixed point ỹ. In the vicinity of the HT fixed point, the
effective lattice spacing becomes larger than the physical correlation
lengths. This fixed point is attractive and as the number of iterations n
becomes large, one can treat the blocks as almost isolated systems with a
large volume bnD. In the following we call q (l)n the average value of the
lth power of the total spin in this volume minus its disconnected parts,
divided by the volume. Assuming that limnQ. q (l)n =q (l) is finite for b < bc,
we conclude that the subtracted average value of the lth power of the
rescaled sum of all the spins scales like b−((2+D−g)(l/2)−D) n for n large and
should be expressible as products of the ỹ with product of eigenvalues
b−((2+D−g)(l/2)−D). Indeed, in explicit calculations for the HM model, we
found that simple linear relations hold, namely, when n becomes large

q (2q)n 3 ỹq(hn)(l̃q)−n (2.4)

and consequently,

q (2q)=K(q)ỹq(hin) (2.5)
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with hin denoting the initial values and K (q) a constant depending on the
choice the scales of the coordinates h and easily calculable. This is dis-
cussed explicitly in Subsection 5.3 for the HM. For the simplicity of the
exposition, we will assume that this is also true for other models. Nevertheless
it is straightforward to generalize the construction for the case of products
of HT scaling fields.

2.3. Step 2

The expansion of ỹq(hin) is expected to converge for hin small enough,
however it might not be very useful or even meaningful near the unstable
fixed point or the Gaussian fixed point. If c (2q) denotes the leading critical
exponent for q (2q), it follows from arguments based on the linear RG trans-
formation that c (2q)=−ln l̃q/ln l1. Consequently, yc

(2q)

1 ỹq is RG-invariant.
We can then factor out the susceptibility into a singular part and a RG
invariant part:

q (2q)=K(q)[y1(d(hin)))]−c
(2q)
[[y1(d(hin))]c

(2q)
ỹq(hin)] (2.6)

The factor in large brackets is RG-invariant and does not need necessarily
to be evaluated for initial values of h. We can use the nth iterate of these
values hn=Rn(hin) for any n and get the same answer. In particular, we can
choose n is such a way that the flow is ‘‘in between’’ the two fixed points
considered here, in a crossover region where the two expansions have a
chance to be valid. One of the main results presented in this article are
numerical evidences that this procedure actually works. In other words,
that there exists an overlap between the domains where approximate
expansions of the scaling fields scale as they should.

The scaling properties of expansions are related to convergence issues
which need to be discussed in the complexification of the construction.
If an eigenvalue appearing in the defining equation for the scaling fields
Eqs. (2.2) and (2.3), is such that |ll | ] 1, it is clear that the only values that
can be taken by |yl | at a fixed point are 0 and .. Consequently, a detailed
analysis of the fixed points for the complexification of the RG transforma-
tion can put restrictions on the domain of convergence of the scaling fields.
Later, the inverse functions d(y) or h(ỹ) will also be used. Their radius of
convergence can be restricted by the study of the extrema of the original
function. In the case of the one dimensional model of Section 4, such a
study can be conducted easily and confirms the results of the numerical
analysis.
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Near criticality, for the values of n in the crossover discussed above,
the values of the scaling fields associated with the irrelevant directions are
usually very small (unless very large initial values have been chosen) and
can be treated perturbatively. In first approximation, we can consistently
set the initial values of the irrelevant scaling fields to zero since they are
multiplicatively renormalized. In this approximation, we describe the flow
along the unstable manifold. A local calculation involving a scaling field
corresponding to the relevant direction is provided in ref. 22 following a
procedure developed in ref. 27 to prove Feigenbaum conjectures.

It should also be noted that since the RG considered here is discrete
(it is constructed by iterating R an integer number of times), RG-invariant
does not mean independent of hin. There is room for log-periodic correc-
tions, which have been first noticed by Wilson, (15) discussed in general in
ref. 28 and observed in the HT expansion of the HM in refs. 13 and 14.
These corrections are studied for the simplified model in Section 4. In our
numerical study of the HM of Section 3, these corrections are too small to
be resolved and will be ignored.

2.4. Step 3

In the previous step, we traded a difficult problem (the estimation of
the initial values of ỹ) for two simpler problems: the estimation of the RG
invariant and the estimation of the initial values of y. Up to now, we have
treated these initial values as free variables and constructed functions of
these variables which depended only on the RG transformation. We now
need to incorporate the information related to the actual initial values. This
calculation depends on the type of models considered. For instance, for a
Ising model, one expects

y1=Y1; 1(bc−b)+Y1; 2(bc−b)2+·· · (2.7)

and

yl=Yl; 0+Yl; 1(bc−b)+· · · (2.8)

for l > 1. The Yl; k are constants that we will evaluate numerically for the
HM. The non-leading terms are responsible for the analytical corrections
and are usually difficult to resolve numerically. A more complete construc-
tion of the initial values in terms of the ‘‘bare parameters’’ used in field
theoretical perturbative calculations (with flows starting near the Gaussian
fixed point) is in progress (29) but will not be discussed here.
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3. DYSON’S HIERARCHICAL MODEL

In this section, we review the basic facts about the RG transformation
of the HM to be used in the rest of the paper and discuss various way to
obtain finite dimensional truncations. For more detail, the reader may
consult refs. 21, 23 and other papers quoted in the introduction. The
energy density of the HM has two parts. One part is non-local (the ‘‘kinetic
term’’) and invariant under a RG transformation. Its explicit form can be
found, for instance, in ref. 21 or in Section 2 of ref. 30. The other part is a
sum of local potentials given in terms of a unique function V(f). The
exponential e−V(f) will be called the local measure and denoted W0(f).
For instance, for Landau–Ginsburg models, the measures are of the form
W0(f)=e−Af

2−Bf4, but we can also consider limiting cases such as a Ising
measure W0(f)=d(f2−1). Under a block spin transformation which
integrates the spin variables in ‘‘boxes’’ with two sites, keeping their sum
constant, the local measure transforms according to the integral formula

Wn+1(f)=
Cn+1
2
e (b/2)(c/4)

n+1
f
2
F dfŒWn 1

f−fŒ

2
2Wn 1

f+fŒ

2
2 (3.1)

where b is the inverse temperature (or the coefficient in front of the kinetic
term) and Cn+1 is a normalization factor to be fixed at our convenience.

We use the Fourier transform

Wn(f)=F
dk
2p
e ikfŴn(k) (3.2)

and introduce a rescaling of k by a factor u/sn, where u and s are constants
to be fixed at our convenience, by defining

Rn(k) — Ŵn 1
uk
sn
2 (3.3)

In the following, we will use s=2/`c with c=21−2/D. This corresponds to
the scaling of a massless gaussian field in D dimensions. Contrarily to what
we have done in the past, we will here absorb the temperature in the
measure by setting u=`b. With these choices, the RG transformation
reads

Rn+1(k)=Cn+1 exp 5−1
2
“
2

“k2
6 5Rn 1

`c k

2
262 (3.4)
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We fix the normalization constant Cn so that Rn(0)=1. For an Ising
measure, R0(k)=cos(`b k), while in general, we have to numerically
integrate to determine the coefficients of R0(k) expanded in terms of k.

If we Taylor expand about the origin,

Rn(k)=1+C
.

l=1
an, lk2l (3.5)

the finite-volume susceptibility reads

qn=−2
an, 1
b
12
c
2n (3.6)

The susceptibility q is defined as q — limnQ. qn. For b larger than bc, the
definition of q requires a subtraction (see e.g., ref. 30 for a practical
implementation). In the following, we will only consider the HT phase
(b < bc). The explicit form for an+1, l in terms of an, l reads

an+1, l=
un, l
un, 0

(3.7)

where

un, l — C
.

i=0

(− 12)
i (2(l+i))!

s2(l+i)i ! (2l)!
C

p+q=l+i
an, pan, q (3.8)

To study the susceptibility not too far from the HT fixed point, we can
expand q in terms of b. Since we choose the scaling factor u so that b is
eliminated from the recursion, we find that a0, l 3 b l. From the form of the
recursion, Eq. (3.8), we can see that an, l will always have b l as the leading
power in its HT expansion (since p+q \ l). We define the coefficients of
the expansion of the infinite-volume susceptibility by

q(b)= C
.

m=0
bmbm (3.9)

We define rm — bm/bm−1, the ratio of two successive coefficients, and
introduce quantities, (19) called the extrapolated ratio (R̂m) and the extrapo-
lated slope (Ŝm) which will be used later in a more general context and are
defined by

R̂m — mrm−(m−1) rm−1 (3.10)
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and

Ŝm — mSm−(m−1) Sm−1 (3.11)

where

Sm —
−m(m−1)(rm−rm−1)
mrm−(m−1) rm−1

(3.12)

is called the normalized slope. If we calculate Ŝm for the HM, we find
oscillations illustrated in refs. 13 and 14.

The HT expansion can be calculated to very high order, however, due
to the amplification of some subleading corrections by the estimators, this
is an inefficient way to obtain information about the critical behavior of
the HM. In ref. 23, it was found that one can obtain much better results by
neglecting the contribution of the an, l when l \ lmax, with lmax much smaller
than the order of the HT expansion. As an example, one can calculate the
1000th HT coefficient of q with 16 digits of accuracy using only 35 terms in
the sum.

This is equivalent to consider the polynomial approximation

Rn(k) 4 C
lmax

l=0
an, lk2l (3.13)

for some integer lmax. There remains to decide if one should or not truncate
to order k2lmax after squaring Rn. This makes a difference since the expo-
nential of the second derivative has terms with arbitrarily high order deri-
vatives. Numerically, one gets better results at intermediate values of lmax
by keeping all the terms in R2n. In addition, for the calculations performed
later, the intermediate truncation pads the ‘‘structure constants’’ of the
maps (see Section 5) with about fifty percent of zeroes. A closer look at
Section 5, may convince the reader that not truncating after squaring is
more natural because we obtain correct (in the sense that they keep their
value when lmax is increased) structure constants in place of these zeroes.
We have thus followed the second possibility where we truncate only once
at the end of the calculation. With this choice

un, l 4 C
2lmax−l

i=0

(− 12)
i (2(l+i))!

(4/c)(l+i) i ! (2l)!
C

p+q=l+i
an, pan, q (3.14)

Compared to the HT expansion, the initial truncation to order lmax is
accurate up to order b lmax. After one iteration, we will miss terms of order
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b lmax+1 but we will also generate some of the contributions of order b2lmax

(but not all of them). After n iterations we generate some of the terms of
order b2

nlmax as in superconvergent expansions. Rigorous justifications of
the polynomial truncation can be found in ref. 22.

4. A ONE-VARIABLE MODEL

Before attacking the multivariable expansions of the scaling fields, we
would like to illustrate the main ideas and study the convergence of series
with a simple one variable example which retains the important features:
a critical temperature, RG flows going from an unstable fixed point to a
stable one, and log-periodic oscillations in the susceptibility.

In order to obtain a simple one-variable model, we first consider the
lmax=1 truncation of Eq. (3.14):

an+1, 1=
(c/2) an, 1−(3c2/8) a

2
n, 1

1−(c/2) an, 1+(3c2/16) a
2
n, 1

(4.1)

Expanding the denominator up to order 2 in an+1, 1 and using Eq. (3.6), we
obtain

qn+1=qn+
b

4
1 c
2
2n+1 q2n (4.2)

This approximate equation was successfully used in ref. 23 to model the
finite-size effects and was used as the starting point for a study of the
scaling field in ref. 18. If we expand q (the limit of qn when n becomes
infinite) in b, and define the extrapolated slope, Ŝm, as in Eq. (3.11), we see
oscillations in Fig. 2 quite similar to those in the HM. (13, 14) Using a rescal-
ing discussed in ref. 18 and the notation t=c/2, the map can be put in the
canonical form

hn+1=thn+(1−t) h2n (4.3)

We call this map the ‘‘h-map.’’ It has a stable fixed point at 0 and an
unstable fixed point at 1. We recover the susceptibility as:

qn=
hn
h0

t−n (4.4)
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Fig. 2. The extrapolated slope (Ŝm) versus m for the HT of q calculated from the simplified
recursion Eq. (4.2) with c=21/3.

We can expand the map about the unstable fixed point, hn=1. Using
the new coordinate dn — 1−hn and the notation l — 2−t, we obtain the
‘‘dual’’ map

dn+1=ldn+(1−l) d2n (4.5)

with the starting value d0=1−b/bc. We call this map the ‘‘d-map’’ and we
can think of d as being the distance to the critical point. We can construct a
function d such that d(yn) — dn by plugging an expansion in yn into the
equation

d(lyn)=ld(yn)+(1−l) d2(yn) (4.6)

Similarly, we can construct the inverse series and obtain d(yn). This allows
us construct dn in terms of d0:

dn=y−1(lny(d0)) (4.7)

Because of the duality between our two maps, we can easily reproduce all
of the above results of the d-map for the h-map and express hn in terms of a
HT scaling field ỹn.

We now turn to the three steps. Note that Step 3 is not necessary: the
knowledge of y(d0) provides the initial value of y as a function of b. Step 1
is straightforward. As shown in ref. 18, in the infinite n limit,

q=
ỹ0
h0
=
ỹ(h0)
h0

(4.8)
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The only difficult part is Step 2. The susceptibility can be written as

q=
G

(1−d0)(y(d0))c
(4.9)

with the RG invariant G — ỹ0 y
c
0. Due to the discrete nature of our RG

transformation, G is not exactly a constant. If expressed in terms of ln(y0),
G is a periodic function of period ln l. However, for l not too close to 2,
the non-zero Fourier modes are very small. Note also that the apparent
singularity when d0 Q 1 is exactly canceled by y(d0)c by virtue of Eq. (4.11)
discussed below. We now give empirical results concerning the large order
behavior of of the expansions of y(d), ỹ(h) and their inverses.

We first consider d(y)=y+;.

l=2 sl y
l. For all tested values of 1 < l < 2,

we obtained very good linear fits of ln |sl−1/sl | versus ln(l), for l large
enough. Thus for large l, the coefficients obey the approximate rule

: sl
sl+1
: 4 Clk (4.10)

where we find that C is always of order 1 (in fact, 0.9 < C < 1) and
0 < k < 1. Using iteratively this formula, we find that the coefficients
decrease like C−l(l !)−k and consequently the d(y) should be an entire func-
tion. The numerical values of k are given in Fig. 3.

We then consider h(ỹ) and again examine the ratios of successive
coefficients, |sl/sl+1 |. We find the ratios flatten to constant values, for large
enough l, indicating a finite radius of convergence. The radius get smaller
and vanish as t approaches zero as shown in Fig. 4. Note that for any

Fig. 3. The exponent k defined in Eq. (4.10) as a function of l.
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Fig. 4. Radius of convergence of h(ỹ) as a function of l=2−t.

value of t tried, we found good evidence that limnQ. Ŝn=−1.5, indicating
a (ỹ− ỹc)1/2 behavior. This is consistent with the existence of a quadratic
minimum for the inverse function discussed below.

We now turn to the inverse functions starting with y(d). As dQ 1, we
reach the HT fixed point and we expect the convergence of the series to
break down in this limit. We find empirically from the analysis of ratios
that for all 1 < l < 2, y(d) converges in the region 0 < d < 1. The analysis
of the extrapolated slope for various l gives convincing evidence that the
main singularity has the form

y(d) ’ (1−d)−1/c (4.11)

This can be seen with short series when l is close to one and requires larger
and larger series as l gets close to 2. Illustration of these properties for a
particular value of l are shown in Figs. 7 and 8 where the estimators are
compared with those of the HM.

Finally, we discuss ỹ(h) which can be seen as a high-temperature
expansion. We found clear evidence that the ratio of coefficients tl/tl+1
approaches 1 for large l. For smaller values of t, it takes larger order to
reach this limit. A detailed study shows that if we continue ỹ(h) for nega-
tive values of h using the series expansion, the function develops a quadra-
tic minimum at some negative value of h. The absolute value of ỹ at that
value of h, in all examples studied, reproduces accurately the radius of
convergence of the inverse function. As one may suspect by looking at
Fig. 2, the analysis of the extrapolated slope is intricated. However, if we
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calculate enough terms and if l is not too close to 2, we get approximate
results which are consistent with a main singularity of the form

ỹ(h) ’ (1−h)−c (4.12)

For instance, just by looking at the asymptotic behavior of Fig. 2, one can
see that c 4 1.4677, as expected, with errors of the order 10−4. It is interest-
ing to note the duality (18) between Eqs. (4.11) and (4.12).

All the results concerning the convergence and the singularities have a
simple interpretation. The finite radius of convergence of y and ỹ is due to
the other fixed point which cannot be located inside the domain of con-
vergence. In this simple example there are exactly two fixed points in the
complexification of the map and this concludes the discussion. On the
other hand, the finite radius of h is due to a minimum of ỹ at negative
values of h while such a minimum does not appear for d.

As we have seen above, ỹn y
c
n is independent of n. We can thus pick n

such that we are just in the crossover region and both expansions have a
reasonable chance to be accurate. In order to test the accuracy of the
approximations yapp(d) (series expansion up to a certain order) for various
n, we have prepared an empirical sequences of dn starting with d0=10−8.
We have then tested the scaling properties by calculating

Dn=|[yapp(dn)/(y0ln)]−1| (4.13)

where y0 was calculated with 16 digits of accuracy by using enough terms
in the expansion of y(d0). For double precision calculations, optimal
approximations are those for which Dn 4 10−16. For such approximation,
the scaling is as good as it can possibly be given the accuracy of y0. Indeed,
due to the peculiar way numerical errors propagate, (31) one does not reach
exactly the expected level 10−16. We can define a similar dual quantity by
replacing d by h and y by ỹ. In this case, ỹ0 is estimated with the same
accuracy as y0 by stabilizing ỹ(hn)/tn, for large enough n.

We have performed this calculation for l=1.1, 1.5, and 1.9. The
conclusions in the three cases are identical. For n large enough, the Dn of y
starts increasing from 10−16 until it saturates around 1. By increasing the
number of terms in the expansion, we can increase the value of n for which
we start losing accuracy. Similarly, for n low enough, the Dn of ỹ starts
increasing etc. We want to know if it is possible to calculate enough terms
in each expansion to get scaling with some desired accuracy for both func-
tions. The answer to this question is affirmative according to Fig. 5 for
l=1.5. One sees, for instance, that with 10 terms in each series, we have
scaling with about 1 part in 1000 near n=45 for both expansions. The
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Fig. 5. Departure from scaling Dn defined in the text, for y (curves reaching 1 to the right)
and ỹ (curves reaching 1 to the left). In each cases, we have considered approximations of
order 10 (dot-dashes), 30 (dots), 50 (dashes) and 70 (solid line). The value of l is 1.5.

situation can be improved. For 70-70 expansions, an optimal accuracy is
reached from n=44 to 46. For the other values of l quoted above, similar
conclusions are reached, the only difference being the optimal values of n.

Another evidence for overlapping convergence is that we can stabilize
the RG invariant G for a certain range of yn. To evaluate G, we use the
series expansions for ỹ and d, cutting each off at some order:

ỹ(1−d(y)) 4 C
m̃

i=1
ti 11− C

m

j=1
sj y j2

i

(4.14)

where sl and tl are the l th coefficients in the d and ỹ series, respectively.
We have found that, given a fixed value of m+m̃, the most accurate values
for G are obtained when m 4 m̃. In Fig. 6, we show G calculated by
keeping 50 terms each in the expansions for y and ỹ. The result is plotted
against ln(y). We used t=0.1, which makes the oscillations much larger
than, for example, near to t=2−2/3. Near the fixed points, we need more
terms in the appropriate series to get accurate results.

We can study the oscillation we see in G by looking at its Fourier
expansion. Since G is periodic in ln y0, we can express

G(y0)=y
c
0ỹ(1−d(y0))=C

p
ape ipw ln y0 (4.15)
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Fig. 6. The invariant function G, calculated at t=0.1, and plotted against ln(y0).

where w — 2p/ln l. The coefficients are given as

ap=
1

ln l
F
lya

ya
yc−1−ipwỹ(1−d(y)) dy (4.16)

As an example, we calculated a0 for t=0.1 where the oscillations are not
too small. The choice of the interval of integration can be inferred from
Fig. 6. If we had infinite series, the function would be exactly periodic. For
finite series, we see that ya cannot be too large or too small. For interme-
diate values, we obtain a0 4 6.06676. Proceeding similarly, we were able to
resolve the next two Fourier modes. For reference, the magnitude of a2 is
about 2×10−10. Using G 4 a0 together with Eq. (4.9), we obtain the leading
amplitude together with the analytical corrections coming from the non-
linear tems in y(d).

5. SCALING FIELDS IN THE HIERARCHICAL MODEL

5.1. Construction of the Scaling Fields

For notational convenience, we first rewrite the unnormalized recur-
sion given in Eq. (3.14), using the ‘‘structure constants’’:

un, s=Cmn
s an, man, n (5.1)
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with

Cmn
s=˛ (c/4)m+n

(−1/2)m+n−s (2(m+n))!
(m+n−s)! (2s)!

, for m+n \ s

0, otherwise

(5.2)

These zeroes can be understood as a ‘‘selection rule’’ associated with the
fact that an, l is of order b l as explained in Section 3. If we follow the trun-
cation procedure explained in Section 3, the indices simply run over a finite
number of values. We use ‘‘relativistic’’ notations. Repeated indices mean
summation. The greek indices indices m and n go from 0 to lmax, while latin
indices i, j go from 1 to lmax. Obviously, Cmn

s is symmetric in m and n. By
construction, an, 0=1 and we can write the normalized recursion in the
form:

an+1, l=
M i
lan, i+C ij

l an, ian, j
1+M i

0an, i+C ij
0 an, ian, j

(5.3)

with M i
g=2C

0i
g .

We then expand the basic map of Eq. (5.3) about the two fixed points
of interest, choosing coordinates such that the matrix associated with the
linearized RG transformation becomes diagonal. This matrix is not sym-
metric and the relations of orthogonality and completeness are left
invariant under rescaling of any right eigenvector by a nonzero constant
together with a rescaling of the corresponding left eigenvector by the
inverse. In the following, we will fix this ambiguity by requiring, in analogy
with Section 4 that the ‘‘other’’ fixed point (i.e., the one not located at the
origin by construction) be at (1, 1,...) in the new coordinates.

The HT fixed point is at the origin of the coordinates in Eq. (5.3) and
all we need to do is diagonalizing the linear form M j

i . This is quite simple
because it is of the upper triangular form. The eigenvalues are just the
diagonal terms. From Eq. (5.2), one sees that lth diagonal term is given as

l̃r=2(c/4)r (5.4)

This spectrum was obtained in Lemma 3.3 of ref. 21 with a different
method. This spectrum has a simple interpretation which will be discussed
below. The upper diagonal form implies that the lth right eigenvector has
only its l first entries non-zero. This means that if we truncate to almax , we
are simply truncating to a subspace spanned by the first lmax eigenvectors.
This is an interesting reinterpretation of the original polynomial truncation
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which can be applied for other models. Introducing new coordinates hl, so
that an, l=k̃ rlhn, r with k̃ the matrix of right eigenvectors, the RG trans-
formation has the form

hn+1, r=
l̃rhn, r+D̃pqr hn, phn, q
1+L̃phn, p+D̃pq0 hn, phn, q

(5.5)

Note that the form of the eigenvectors guarantees that hn, l is of order b l.
This can be seen by inverting the linear change of variable using the matrix
of left eigenvectors. Due to the upper-diagonal form of the linear trans-
formation, the second left eigenvector has its first entry equal to zero, the
third its first two entries etc.

Near the nontrivial fixed point, we first use accurate values of the
fixed point (25) to bring the fixed point at the origin. The eigenvectors are
then calculated numerically using truncated forms of the linearized RG
transformation. There is no exact closure as in the HT case, however the
first eigenvalues stabilize rapidly when lmax increases. There is only one
eigenvalue larger than 1. For instance the numerical values for c=21/3 are
l1=1.42717..., l2=0.85941... . A more complete list is given in ref. 24. In
summary, we can choose a system of coordinate dl where the unstable fixed
point will be at the origin of the coordinate and the HT fixed point at
(1, 1,...), and such that the RG transformation has the form

dn+1, r=
lrdn, r+Dpqr dn, pdn, q
1+Lpdn, p+Dpq0 dn, pdn, q

(5.6)

We can express canonical coordinates (linear scaling fields) in terms of
the nonlinear scaling fields:

dn, r= C
i1, i2,...

sr, i1i2 · · · y
i1
n, 1y

i2
n, 2 · · · (5.7)

where the sums over the i’s run from 0 to infinity in each variable and
yn, l=lnl y0, l. Using the notation i=(i1, i2,...) and the product symbol, we
may rewrite the expansion as

dn, r=C
i

sr, i D
m
y imn, m (5.8)

Using the transformation law for the scaling fields, we have

dn+1, r=C
i
sr, i D

m
(lm ym) im (5.9)
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Each constant term, sr, 0, 0,..., is zero, as the scaling fields vanish at the fixed
point. From Eq. (5.6), we see that all but one of the linear terms are zero
for each value of r. The remaining term is the one proportional to the rth
scaling variable. We take these coefficients to be 1, so that the dn, r 4 yn, r
for small yn, r. For the higher-order terms, we obtain the recursion

sr, i=
; j+k=i (D

pq
r sp, jsq, k−sr, j <m ljmm Lpsp, k)−; j+k+l=i sr, j <m ljmm Dpq0 sp, ksq, l

(<m l imm −lr)
(5.10)

The calculation can be organized in such way that the r.h.s. of the equa-
tions are already known. This will be the case for instance if we proceed
order by order in ; q iq, the degree of non-linearity. This expansion may
have small denominator problems. However, as discussed in the introduc-
tion, using numerical values of the eigenvalues as calculated in ref. 24, we
did not find spectacular cancellations between the two terms entering the
denominator.

We can likewise expand each hn, r in terms of scaling fields ỹn, 1, ỹn, 2,... .
The derived recursions are identical in form to those derived above. From
Eq. (5.4), one sees that the denominator will vanish for some equations.
This question is discussed in ref. 26 where it is shown that to all order
relevant for the following calculation, a zero denominator always comes
with a zero numerator.

One can likewise find expansions of the scaling fields in terms of the
canonical coordinates, by setting

yn, r=C
i
ur, i D

m
d imn, m (5.11)

and requiring that when dn is replaced by dn+1, the function is multiplied
by lr. Since dn+1 has a denominator, it needs to be expanded for instance in
increasing order of non-linearity. A simple reasoning shows that exactly the
same small denominators as in Eq. (5.10) will be present in these calcula-
tions. The same considerations applies for ỹ.

5.2. Practical Implementation

We have calculated an empirical series of an, l with c=21/3, an initial
Ising measure and b=bc−10−8. Detail relevant for this calculations can be
found in refs. 23, 24, and 31. The calculations have been performed
with lmax=30, a value for which at the b considered, the errors due to the
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truncation are of the same order as those due to the numerical errors.
These errors are small enough to allow a determination of the susceptibility
with seven significant digits if we use double precision.

We now discuss the flow chronologically. Our choice of b (close to bc)
means that we start near the stable manifold. After about 25 iterations, we
start approaching the unstable fixed point and the linear behavior
dn+1, l 4 lldn becomes a good approximation. During the next 20 iterations,
the irrelevant variables die off at the linear rate and at the same time the
flow moves away from the fixed point along the unstable direction, also at
the linear rate. At n=47 we are in good approximation on the unstable
manifold and dn, 2 becomes proportional to d2n, 1. In other words, the non-
linear terms are taking over. At this point, we can approximate the
dn, l as functions of y1 only: dn, l 4 dl(l

n
1y1, 0, 0,...). This approximation is

consistent in the sense that if y2=0 at n=0 then it is also the case for all
positive n.

We have calculated dl(y1, 0, 0,...) up to order 80 in y1 using Eq. (5.10).
There cannot be any small denominators in this restricted case. We have
then inverted d1, now a function of y1 only, to obtain y1(d1). Given the
empirical dn, 1 we then calculated the approximate yn, 1 and then used the
other functions dl(y1) (with l \ 2) calculated before to ‘‘predict’’ dn, l.
Comparison with the actual numbers were good in a restricted range. For
n=49, the relative errors were less than a percent. They kept decreasing to
less than one part in 10,000 for n=54 and then increased again. It will be
shown later that this corresponds to the fact that when y1 becomes too
large (a value of approximately 3.7 first exceeded at n=57), the series
expansion of d1 seem to diverge, unlike the one-variable model for which
d(y) is an entire function.

The quality of the approximation between n=45 and 55 can be
improved by treating y2 perturbatively. We have expanded

dl(y1, y2, 0,...) 4 d
(0)
l (y1, 0, 0,...)+y2d

(1)
l (y1, 0, 0,...) (5.12)

with d (1)l up to order 30 in y1. This allows us to obtain the first order
expression:

ỹ1(h(d(y1, y2, 0,...))) 4 G(y1)+y2H(y1) (5.13)

Note that expansions at both fixed points are involved (one for ỹ1 and one
for d) in this equation. When finite series are used, the approximation will
only be valid in the crossover region. Near n=55, the presence of the HT
fixed point starts dominating the flow but we are still far away from the
linear regime. We have taken these non-linear effects in ỹ1(h) into account
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by calculating it up to order 11 in b. This is a multi-variable expansion.
Recalling the discussion about the HT expansion in Section 3 and the
properties of the eigenvectors of the linearized RG transformation about
the HT fixed point, we can count the number of terms at each order in b.
At order two, we have h21 and h2, but since the linear transformation is
diagonalized, h2 will only appear in ỹ2(h) with coefficient 1. It is easy to see
that at order l, one needs to determine p(l)−1 coefficients, where p(l) is
the number of partitions of l. It has been known from the work of Hardy
and Ramanujan that

p(l) ’
exp(p`2l/3)

4`3 l
(5.14)

It seems thus difficult to get very high order in this expansion. In order to
fix the ideas, there are 41 terms at order 11, 489 at order 20 and 13,848,649
at order 80.

As we will explain below, the expansion up to order 11 has a sufficient
accuracy to be used starting at n=55. It also provides optimal (given our
use of double precision) results for n \ 60. As n increases beyond 60, one
can see the effect of each order disappear one after the other as discussed in
5.4. Finally, the linear behavior becomes optimal near n=130. This
concludes our chronological discussion.

5.3. Step 1

From Eqs. (3.6) and remembering that we have absorbed b in the an,
we obtain

qn=−(2/b) k̃ r1hn, r(2/c)
n (5.15)

where k̃ is the matrix of right eigenvectors. For n large enough, the linear
behavior applies and the hn, r get multiplied by 2(c/4)r at each iteration. In
the large n limit, only the r=1 term survives and consequently,

q=−(2/b) k̃11 lim
nQ.
hn, 1(2/c)n (5.16)

Using the same method as in the one-variable model, we can in the limit
replace hn, 1 by ỹn, 1 and obtain

q=−(2/b) k̃11ỹ0, 1 (5.17)
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For reference, in the case c=21/3 and with the normalization of the eigen-
vectors discussed above, k̃11 4 −0.564. Also note that since for all l,
0 < l̃l < 1, all other monomials in the ỹl go to zero faster than ỹ1.

One can calculate the subtracted 2q-point function following the
same procedure. As shown in refs. 23 and 30, they can be expressed in
terms of aq, n and higher powers of the an, l with l < q. Following the pro-
cedure described above, these quantities can then reexpressed in terms of ỹ.
We need to identify the leading term in this expansion. By rescaling
(−1)q (2q)! aq, n by (4/c)n we obtain the average value of the 2qth power of
the main spin (sum of the 2n spin variables fx). In the symmetric phase, this
quantity scales like 2qn when n increases. However, the subtracted version
of this quantity (which is generated by the free energy) is expected to scale
like 2n. In other words, if we assume that the free energy density is finite

aq, n−(subtractions)3 [2(c/4)q]n (5.18)

One clearly recognizes the spectrum of Eq. (5.4) and expects that the
leading term is

aq, n−(subtractions)3 ỹn, q (5.19)

In order to prove this conjecture by direct algebraic methods, one needs to
show that the the non-linear terms which scale faster than ỹn, q are canceled
by the subtraction. For instance for the subtracted four-point function and
c=21/3, l̃21 > l̃2 and l̃31 > l̃2. We have checked that the corresponding
terms (ỹ1)2 and (ỹ1)3 disappear with the subtraction. We have conducted
similar checks for the 6 and 8 point functions (29) and found similar can-
cellations. It should be noted that a rigorous proof that the mechanism
works in general, would imply the finiteness of the free energy density and
hyperscaling (as defined in ref. 30). The practical calculation of the sub-
tracted quantities is made difficult by the fact that as n increases, the ‘‘sig-
nal’’ becomes much smaller than the ‘‘background’’ (the unsubtracted
part). This requires the use of adjustable precision arithmetic. In the
following, we will only discuss the 2 point function (susceptibility).

5.4. Step 2

We rewrite the susceptibility as

q 4 (1.127853/b) G(y0, 1)−c (5.20)
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Fig. 7. The absolute value of the difference between the extrapolated ratio and 1 for the HM
(empty boxes) and the SM (full circles), as a function of the order.

with the RG invariant G — ỹ0, 1 y
c
0, 1=ỹn, 1 y

c
n, 1. We first constructed y1(d1)

by neglecting the effects of the irrelevant directions, as explained in
Subsection 5.2. In order to provide a comparison, we have calculated the
same y(d) for the one-variable model with l=1.2573. In the following, we
call this model the ‘‘simplified model’’ (SM). For this special value of l, the
critical exponents c of the two models coincide with five significant digits.
We have good evidence that both series have a radius of convergence 1 as
indicated by the extrapolated ratio defined in Eq. (3.10) reaching 1 at an
expected rate (Fig. 7). Similarly, their extrapolated slopes seem to converge
to the same value 1/c−1 4 −0.23026... as shown in Fig. 8. In conclusion,

Fig. 8. The extrapolated slope Ŝm for the HM (empty boxes) and the SM (full circles) as a
function of the order.
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Fig. 9. Logarithm of the absolute value of the coefficients of the expansion of d1(y1)
divided by the order, for the HM (empty boxes) and the SM (circles).

the function y(d) for the SM is a reasonably good model to guess the
asymptotic behavior of y1(d1). Remembering the explanations of Section 4,
this indicates the absence of other fixed points in the vicinity of the
unstable fixed point.

For the inverse function d1(y1), the situation is more complicated as
shown in Fig. 9. The quantity plotted in this figure will be used to discri-
minate between a finite and an infinite radius of convergence. If |bm | ’ R−m

as for a radius of convergence R, then we have ln(|bm |)/m ’ − ln(R)+A/m
for some constant A. On the other hand, if |bm | ’ (m!)−a as for an infinite
radius of convergence, then we have ln(|bm |)/m ’ −a(ln(m)−1). In the
following, we will compare fits of the form A1+A2/m and B1 ln(m)+B2.
We first consider the case of SM, where according to the our study in
Section 4, expect an infinite radius of convergence. This possibility is highly
favored as shown in Fig. 10. One sees clearly that the solid line is a much
better fit. The chi-square for the solid line fit is 200 times smaller. In addi-
tion B1 4 −B2 as expected.

The analysis for the HM is more delicate. One observes periodic
‘‘dips’’ in Fig. 9 which make the ratio analysis almost impossible. We have
thus only considered, the ‘‘upper envelope’’ by removing the dips from
Fig. 9. The fit represents an upper bound rather than the actual coeffi-
cients. The fits of the upper envelope are shown in Fig. 11. The possibility
of a finite radius of convergence is slightly favored, the chi-square being
0.4 of the one for the other possibility. Also, the second fit does not
have the B1 4 −B2 property. From A1 4 −1.32, we estimate that the
radius of convergence is about 3.7. This means that if we want to write some

From Nonlinear Scaling Fields to Critical Amplitudes 239

File: KAPP/822-joss/108_1-2 373232 - Page : 27/34 - Op: GC - Time: 13:36 - Date: 02:05:2002



Fig. 10. Comparison of fits of the form A1+A2/m (dots) and B1 ln(m)+B2 (solid line) with
the data provided in Fig. 9 for the SM (circles).

analytical formula for the flows by first calculating the initial values of the
scaling fields and then calculating d at successive iterations by using their
expression in terms of the scaling fields, we will have to switch variables in
the crossover region.

As explained above, the approach of the HT fixed point is intrinsically
a multivariable problem. For this reason, the calculation of Dn, defined in
Eq. (4.13), that tests the quality of scaling, will be our main tool of analy-
sis. In the following, we limit the discussion to ỹ1(h) which enters in the
susceptibility. We have calculated ỹ1(h) in terms of 11 variables, up to

Fig. 11. Comparison of fits of the form A1+A2/m (solid line) and B1 ln(m)+B2 (dots) with
selected points of the data in Fig. 9 for the HM (boxes).
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Fig. 12. The quantity Dn defined in Eq. (4.13) for expansions of ỹ1 in b, at order 1 (solid
line), 2 (dashes), 3 (dots), etc. for each iteration n.

order 11 in b. As in Section 4, we will use an empirical series an, l, calculate
the corresponding hn, l an plug them in the scaling fields and check the
scaling properties. This empirical series was calculated with an initial Ising
measure and b=bc−10−8 (see ref. 24). Again we define a quantity Dn as in
Eq. (4.13) which is very small when we have good scaling and increases
when the approximation breaks down. The results are shown in Fig. 12 for
successive orders in b. The solid line on the right is the linear approxima-
tion. It becomes optimal near n=130. The next line (dashes) is the second
order in b expansion. It becomes optimal near n=90. Each next order gets
closer and closer to be optimal near n=60. The last curve on the left is the
order 9 approximation. It is hard to resolve the next two approximations
on this graph.

The asymptotic value is stabilized with 16 digits and one may wonder
why we get only scaling with 14 or 15 digits in Fig. 12. The reason is that
we use empirical data and that numerical errors can add coherently as
explained in ref. 31. This can be seen directly by considering the difference
between two successive values of Dn. A detailed analysis shows that the
numerical errors at each step tend to be negative more often than positive,
and consequently there is a small ‘‘drift’’ which affects the last digits.

We can now look at the Dn defined as in Eq. (4.13) for y1 and ỹ1
together in Fig. 13. If we use an expansion of order 5 in b for ỹ and of
order 10 in d1 for y1, we can get scaling within a few percent for both
variables at n=54. We can go below 1 part in 1000, with an expansion of
order 11 in b and order 80 in d1. At this point, the main problem is that the
effects of the subleading correction makes the scaling properties worse
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Fig. 13. Values of Dn for ỹ1 up to order 5 in b (filled circle) and 11 (filled boxes), and for y1
up to order 10 in d1 (empty circles) and with first order corrections in y2 (dots), and up to
order 80 in d1 (empty stars) and with first order corrections in y2 (solid line).

when n [ 57 and n decreases. One can improve the scaling properties by
taking the effects of y2 into account. A detailed study shows that one can
estimate the subleading effects between n=40 and 45 as

y1(dn, 1)
ln1

4 7.2778×10−9+3.2×10−9×ln2 (5.21)

It is thus possible to get a function scaling better by subtracting these
correction. This improve the scaling properties by almost one order of
magnitude near n=54 and by almost two order of magnitude near n=45.
From Fig. 13, we see that the combined scaling is optimal near n=54
which corresponds to an approximate value of 2 for y1.

Using Eq. (5.12), we can take into account the first order correction
in y2. After simple manipulations, we can rewrite the RG invariant as

G 4 C1+C2 y2, 0(y1, 0)D (5.22)

with C1=G(y1) y
c
1 and H(y1) y

c−D
1 . The functions G and H are defined by

Eq. (5.13). They rely on both expansions used and consequently they are
only valid in a crossover region. Using explicit forms of C1 and C2 as a
function of y1, we observe a plateau for each function which are shown in
Fig. 14. Using the flattest part of the plateau to estimate the constant we
obtain C1 4 1.46416 and C2 4 1.663. Note that these two numbers are
dependent of the choice of the scales for the scaling fields, but independent
of the initial conditions. Consequently, if everybody agreed on the scales,
these quantities could be called universal.
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Fig. 14. Values of C1 (empty squares) and C2 (black circles) defined by Eq. (5.22), as a
function of y1.

5.5. Step 3

There remains to estimate the initial values of the y1 and y2. This step
will done numerically from empirical values of dn. First, we obtain a rough
estimate of y2, n from d2, n at values of n where the linear approximation is
good. Plugging this value in Eq. (5.12) for l=1, and inverting to get yn, 1 as
a function of dn, 1. Dividing by ln1 we get an estimated value of y0, 1 with a
plateau of about 10 iterations where the value is stabilized with 6 digits.
Repeating for various temperatures we were able to determine the leading
coefficient in Eq. (2.7): Y1; 1 4 0.72782. Using Eq. (5.12) but for d2, together
with our previous estimates of y1; n, we obtain Y2; 0 4 −0.565. Subleading
coefficients are difficult to resolve because 2D ’ 1 and the nonlinear con-
tributions in y2 are of the same order as the analytical corrections.

This conclude our approximate treatment of Step 3. Using Eqs. (5.20)
and (5.22) we obtain the usual parametrization of the susceptibility of
Eq. (1.1) with A0 4 2.1162 and A1 4 −1.196 in very good agreement with a
fully numerical determination of these amplitudes. (24)

6. CONCLUSIONS

In summary, we have shown with two examples that the 3 steps
advocated in Section 2 lead to an accurate determination of the leading and
subleading critical amplitudes. We provided numerical evidence that the
formal expansions of the scaling fields associated with the HT and unstable
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fixed point have reasonable convergence properties and scale properly in
overlapping domains. The determination of the initial values of the scaling
fields associated with the unstable fixed point (third step) have been
obtained numerically in the case of an initial Ising measure. Putting
everything together, we were able to confirm numerical results obtained
earlier.

Analytical methods are now being used (29) to consider initial measures
of the Landau–Ginzburg type in the vicinity of the Gaussian fixed point.
For such initial measures, we can use perturbation theory in the quartic (or
higher orders) coupling constant to construct the scaling fields associated
with the Gaussian fixed point. Interestingly, one could use some of the
methods developed here to interpolate between the Gaussian fixed point
and the unstable fixed point. The completion of this task will allow us to
give analytical expressions for the renormalized quantities in terms of the
bare ones, which is the notoriously difficult problem that has to be faced by
a field theorist. We are planning to extend the calculations performed here,
to higher order derivatives of the free energy with a non-zero magnetic field
and check explicitly amplitudes relations appearing in the literature. (32–34)

Another interesting question that could be addressed within this context is
the crossover from classical to critical behavior. (7, 9, 10) The completion of
these projects will provide a detailed comparison between general RG
expectations and their practical realization for the HM.

The hierarchical approximation used in this article has allowed us to
calculate large order expansions for the scaling fields. The fact that the
general ideas advocated have worked properly means that one should now
attempt to apply them to nearest neighbor models where similar calcula-
tions would be more time consuming. The examples we have in mind are
spin models in three dimensions and asymptotically free theory such as the
O(N) spin models in two dimensions or lattice gauge theory in four
dimensions. In all cases, there exists some advanced technology for the
weak and strong coupling expansions but the question of the interpolation
has only been studied with the Monte Carlo method. (6, 8)

We expect that some of the simple features found in the study of the
HT fixed point of the HM will generalize to nearest neighbor models. First,
the fact that the HT scaling fields are linearly related to the successive
derivatives of the free energy. Second, the fact that the restriction to a finite
number of eigenvectors of the linearized RG transformation near the HT
fixed point can be used to obtain improved HT expansions such as the
polynomial truncation used above. However, the most difficult task
remains a construction of the unstable fixed point and the RG flows in its
vicinity, with a control comparable to the case the hierarchical model. This
is a challenging problem for the future.
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